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Overview

1. The balloon problem

2. Mathematical model for the analysis of par-

tially inflated strained balloons

3. Analysis of pumpkin balloon
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The Balloon Problem: Design and Analysis

� Design - Determine the shape of a balloon to carry a payload of
weight L at a constant altitude.

Æ Typically, assume a statically determinate shape
(consider balloon system weight and hydrostatic pressure).

Æ Actual balloon is constructed from long tapered flat sheets of thin film
that are sealed edge-to-edge. Load tendons are attached along
each seam.

� Analysis - Estimate film stresses.

Æ Model the balloon as an elastic membrane

Æ Include elastic reinforcing load tendons

Æ Consider launch, ascent, and float configurations.

Æ Mathematical model for the analysis of strained/partially inflated bal-
loons supported by NASA Awards: NAG5-697, 5292, 5353.
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Partially Inflated Balloons (same loading)
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Partially Inflated Balloon (Single Gore)
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Partially Inflated Balloon with Lobes
                       

6



Design Related Considerations
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Natural-Shape Equations (σc � 0)

Axisymmetric membrane theory:
UMN, 1950s; further balloon development by J. Smalley, 1960-70s.
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Natural-Shape Balloons
Zero Pressure and Super-Pressure Designs
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Æ Zero-pressure balloons (p0 � 0).
Typical missions are several days.
Open at base and need ballast to maintain constant altitude.

Æ Super-pressure balloon (p0 �� bzmax � 0).
Add sufficient pressure so that day/night volume changes are reduced.
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Super-Pressure Natural-Shape Balloon

A developable (ruled) surface “Manufactured” design

Æ While the natural-shape design is axisymmetric, manufactured design
consists of piecewise ruled surfaces.

Æ ZP-balloons can handle the film stresses that are normally encountered.

Æ With a natural-shape superpressure design, available thin films are not
strong enough to contain the pressure, or too heavy, or too expensive.

Æ Solution: A pumpkin shape with very strong tendons.
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The Pumpkin Balloon

� Curvature in the hoop direction transfers load from film to the tendons.

� Increased tendon stiffness can be achived by tendon shortening
(there is a film/tendon mismatch!).
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Background on the Pumpkin Balloon

Æ J. Smalley coined the term pumpkin balloon. Extensibility of the film is
used to achieve the pumpkin gore shape (early 1970s).

Æ CNES built several small pumpkin balloons, cutting half-gore panels with
extra material (mid-late 1970s)

Æ Sewing techniques to gather material at gore seams
(N. Yajima, Japan, 1998, see Adv. in Space Res., 2000).

Æ NASA/ULDB - structural lack-of-fit (shorten tendons) + material properties
(W. Schur, PSL/WFF, 1998, see AIAA-99-1526).

� There are several versions of the pumpkin balloon. We will analyze a
NASA ULDB pumpkin design flown in 2001.
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Strain Analysis
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The Natural (unstrained) State of a Complete Balloon
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Observations and EM-Model Assumptions

Æ Linear stress-strain constitutive law

Æ Isotropic material (E-Youngs modulus, ν-Poisson’s ratio)

Æ Constant strain model (T � SRe f �� T � S )

Æ Wrinkling via energy relaxation (Pipkin) - facets are taut, slack, wrinkled

Æ Energy relaxation allows a tension field solution

Æ Folds can be used to describe distribution of excess material.

Æ Load tendons behave like sticky linearly elastic strings

Æ Shapes are characterized by large deformations but small strains.

Æ Hydrostatic pressure is shape dependent
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Variational Principle for a Strained Balloon

Problem �

For S � C ,
Minimize: ET �S� � EP�E f �Et �St �S f

Subject to: V �V0

S balloon shape
C set of allowable shapes
ET Total energy
V Volume
EP hydrostatic pressure potential
E f gravitational potential energy due to film weight
Et gravitational potential energy due to tendon weight
St strain energy of tendons
S f strain energy of film

Problem � is discretized and solved by EMsolver - developed for balloon ap-
plications, written in Matlab (uses fmincon - find minimum of a nonlinear
multivariable function with linear and/or nonlinear constraints).

Aspects of EM-model have been implemented in Ken Brakke’s Surface Evolver.
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Energy Terms
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Energy Relaxation �� Tension Field

In Pipkin’s approach decompose� into three disjoint regions:

� - Slack region: Cauchy-Green strains are both negative, δ1 � 0, δ2 � 0;

� - Tense region: both principal stress resultants are positive, µ1 � 0, µ2 � 0;

� - Wrinkled region (�����	�).

Classify each Tl �Ω
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������������	
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�See FB and Collier, AIAA J, Vol 39, No. 9, Sept 2001, 1662-1672.
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Strained Pumpkin Balloon
(joint work with W. Schur PSL/WFF)
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Wrinkling Summary
2.9% slack tendons 2.2% short tendons
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Principal Stresses: Superpresure Natural vs. Pumpkin
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Stress Analysis Summary

t � 38µm (1.5 mil) Max Stress (stress resultant)

Tendon Slack 2.9% Shorten 2.0%

Meridional 78 MPa (17 lbf/in) 0 MPa (0 lbf/in)
Natural

Hoop 78 MPa (17 lbf/in) 5.25 MPa (1.41 lbf/in)

Meridional 28 MPa (6.09 lbf/in) 0 MPa (0 lbf/in)
Pumpkin

Hoop 40 MPa (8.70 lbf/in) 4.25 MPa (0.92 lbf/in)
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Conclusions

� Pumpkin design (shape + tendon shortening)

offers a significant reduction in maximum stresses

compared to natural-shape superpressure design.

� The variational formulation and optimization based

solution process of EMsolver provides an analyt-

ical tool that is readily adaptable to other mem-

brane and gossamer structures.
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Appendices

� (2002) Comparison of EMsolver predictions with

measurements.

� Benchmark comparisons with ABAQUS

Æ (1998) Zero pressure natural shape;

EMsolver with virtual fold.

Æ (2001 - ) Spherical balloon with rope constraints;

EMsolver with strain energy relaxation.
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Compare EMsolver Predictions with Measurements

Joint work - Willi Schur (PSL/WFF); Tech. supp. - Roy Tolbert (NASA/WFF)

Measured Predicted Absolute Error Relative Error
M P �M�P� �M�P��M�

Diameter 4.0606 4.034 0.0266 0.0064
Z(Diam) 1.2846 1.239 0.0456 0.0354
Height 2.4102 2.449 0.0388 0.0160

Set-up for test vehicle inflations: Elevation (el) and azimuth (az) were recorded.

(a) Side view - elevation measurements; a 4 ft ruler was attached to an over-
head hoist and lowered until it was just touching the top of the balloon.

(b) Overhead view - azimuthal measurements, since it was difficult to lo-
cate the line of sight tangency point for az, the az-measurements are
probably not as accurate as the el-measurements.
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(a) Side view
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(b) Top view
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Benchmarks: ABAQUS and EMsolver

1998 Zero-pressure natural shape balloon. Analyzed single gore.
Joint work with W. Schur (PSL/WFF) for NASA Balloon Office

2001-present Spherical balloon with mooring ropes and rigid end caps.
Joint work with Laura Cadonati (Princeton/MIT) for The Borexino Project
(a solar neutrino particle detector experiment)
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Comparison of
EMsolver (virtual fold, K. Brakke)

and
ABAQUS (tension field, W. Schur)

ZP-natural shape
Joint work with W. Schur (1998)

Parameters
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b � 0�05429N/m3 ν � 0�82
E � 124 MPa Et � 26�24 kN

mf � 18�7 g/m2 mt � 0�0313 g/m
V � 832515m3 (zero-slackness)
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Borexino Containment Vessel (joint work with L. Cadonati Princeton/MIT)

Stainless Steel Water Tank
18m ∅

Stainless Steel
Sphere 13.7m ∅

2200 8" Thorn EMI PMTs

Water
Buffer

100 ton 
fiducial volume

Borexino Design

Pseudocumene
Buffer

Steel Shielding Plates
8m x 8m x 10cm and 4m x 4m x 4cm

Scintillator

Nylon Sphere
8.5m ∅

Holding Strings

200 outward-
pointing PMTs

Muon veto:

Nylon film
Rn barrier
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Borexino (continued)
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Principal Stress Resultants

Open System: P�0� � 96 Pa, P�2R� � 170 Pa
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